已知实数,函数.(1)当时,求的最小值;(2)当时,判断的单调性,并说明理由;(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.
(本小题满分14分) 已知中心在坐标原点的椭圆经过点,且点为其右焦点。(1)求椭圆的方程;(2)是否存在平行于的直线,使得直线与椭圆有公共点,且直线与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
(本小题满分14分) 如图3所示,四棱锥中,底面为正方形, 平面,,,,分别为、、的中点.(1)求证:;(2)求二面角D-FG-E的余弦值.
(本小题满分12分)一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(1)若从袋子里一次随机取出3个球,求得4分的概率;(2)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
(本小题满分12分)在△中,角所对的边分别为,已知,,.(1)求的值;(2)求的值.
半圆的直径为2,为直径延长线上一点,且.为半圆上任意一点,以为边向外作等边,则点在什么位置时四边形的面积最大?求出这个最大面 积.