设项数均为()的数列、、前项的和分别为、、.已知,且集合=. (1)已知,求数列的通项公式;(2)若,求和的值,并写出两对符合题意的数列、;(3)对于固定的,求证:符合条件的数列对(,)有偶数对.
设a、b、c均为实数,求证:++≥++.
自极点O作射线与直线相交于点M,在OM上取一点P,使得,求点P的轨迹的极坐标方程.
用数学归纳法证明不等式: 。
已知,若所对应的变换把直线变换为自身,求实数,并求M的逆矩阵.
(选做题)从A,B,C,D四个中选做2个,每题10分,共20分. A.选修4—1 几何证明选讲 如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC. (Ⅰ)求证:ÐP=ÐEDF; (Ⅱ)求证:CE·EB=EF·EP.