如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=。(1)求证:四边形ABDE是平行四边形;(2)求AB的长。
(本题6分)先化简再求值:,其中
化简(每小题4分,共8分)⑴ ⑵
(本小题满分12分)已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).(1)求抛物线的解析式;(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标.(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.
(本小题满分12分)如图,的直径和是它的两条切线,切于E,交AM于D,交BN于C.设.(1)求证:;(2)求关于的关系式;(3)求四边形的面积S,并证明:.
(本小题满分10分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.(1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?