已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹).(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由.(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.
某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图. (1)求抽取了多少份作品; (2)此次抽取的作品中等级为B的作品有 ,并补全条形统计图; (3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.
图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动 (1)请在图①中用圆规画出光点P经过的路径; (2)在图①中,所画图形是 轴对称 图形(填“轴对称”或“中心对称”),所画图形的周长是 (结果保留π).
如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE, 求证:△ABD≌△AEC.
如图(图略),从一副扑克牌中选取红桃10,方块10,梅花5,黑桃8四张扑克牌,洗匀后正面朝下放在桌子上,甲先从中任意抽取一张后,乙再从剩余的三张扑克牌中任意抽取一张,用画树形图或列表的方法,求甲乙两人抽取的扑克牌的点数都是10的概率.
为促进交于均能发展,A市实行“阳光分班”,某校七年级一班共有新生45人,其中男生比女生多3人,求该班男生、女生各有多少人.