(本小题共13分)将这个数随机排成一列,得到的一列数称为的一个排列.定义为排列的波动强度.(Ⅰ)当时,写出排列的所有可能情况及所对应的波动强度;(Ⅱ)当时,求的最大值,并指出所对应的一个排列.
设函数f(x)=-6x+5,XR (1) 求函数f(x)的单调区间和极值 (2) 若关于x的方程f(x)=a有三个不同实根,求实数a的范围. (3) 已知当x(1,+∞)时,f(x)≥K(x-1)恒成立,求实数K的取值范围。
已知向量a=(sinX,),b=(cosX,﹣1) (1) 当a∥b时,求2cos2X-sin2X的值 (2)求f(x)=(a+b)·b的值域
F1,F2是双曲线的左右焦点,P是双曲线上一点,且∠F1PF2=600,S△PF1 F2=12 又离心率为2,求双曲线方程。
如图,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD﹦60°,E是CD中点, PA⊥底面ABCD,PA= (1)证明:平面PBE⊥平面PAB (2)求二面角A—BE—P的大小。
数列﹛﹜中,=,前n项和满足+1-=()n+1 (nN*) (1)求数列﹛﹜的通项公式以及前n项和 (2)若,t(+), 3(+)成等差数列,求实数t的值。