(本小题满分14分)已知:在函数的图象上,以为切点的切线的倾斜角为(Ⅰ)求的值;(Ⅱ)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。
中心在原点,一焦点为F1(0,5)的椭圆被直线y=3x-2截得的弦的中点横坐标是,求此椭圆的方程。
椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
已知三角形的两顶点为,它的周长为,求顶点轨迹方程.
设P,Q,R,S四人分比获得1——4等奖,已知: (1)若P得一等奖,则Q得四等奖; (2)若Q得三等奖,则P得四等奖; (3)P所得奖的等级高于R; (4)若S未得一等奖,则P得二等奖; (5)若Q得二等奖,则R不是四等奖; (6)若Q得一等奖,则R得二等奖。 问P,Q,R,S分别获得几等奖?
写出下列各命题的否命题和命题的否定: (1),若,则; (2)若,则; (3)若,则; (4)若,则是等比数列。