(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
设函数是定义在上的增函数,是否存在这样的实数,使得不等式对于任意都成立?若存在,试求出实数的取值范围,若不存在,请说明理由.
已知定义域为R的函数是奇函数. ①求实数的值; ②用定义证明:在R上是减函数; ③解不等式:.
、两城相距100km,在两地之间 (直线AB上)距城km处的地建一核电站给、两城供电,为保证城市安全,核电站与城市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数为0.3,若城供电量为20亿度/月,城为10亿度/月. (1)求月供电总费用表示成的函数; (2)核电站建在距A城多远,才能使供电费用最小?
解关于的不等式:.
记关于的不等式的解集为,不等式的解集为. (1)若,求; (2)若,求正数的取值范围.