(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
解不等式
已知函数,()其定义域为(),设.(1)试确定的取值范围,使得函数在上为单调函数;(2)试判断的大小并说明理由.
已知,,直线与函数的图象相切,切点的横坐标为,且直线与函数的图象也相切.(Ⅰ)求直线的方程及实数的值;(Ⅱ)若(其中是的导函数),求函数的最大值;(Ⅲ)当时,求证:
已知、、、为圆上的四点,直线为圆的切线,,与相交于点 ⑴ 求证:平分⑵,求的长.
已知函数为常数,且有极大值,求的值及的极小值.