(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
已知数列,当时满足,(Ⅰ)求该数列的通项公式;(Ⅱ)令,求数列的前n项和.
已知函数的部分图象如图所示. (Ⅰ)求函数的解析式,并写出 的单调减区间; (Ⅱ)已知的内角分别是A,B,C,角A为锐角,且的值.
设为实数,函数(Ⅰ)当时,求在上的最大值; (Ⅱ)设函数,当有两个极值点时,总有,求实数的值。(为的导函数)
已知数列、满足:,,。(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列{}的前n项和
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。(Ⅰ)若G为FC的中点,证明:AF//平面BDG;(Ⅱ)求平面ABF与平面BCF夹角的余弦值。