(本小题共13分)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
(本小题满分10分) 定义域为的奇函数满足,且当时,. (1)求在上的解析式; (2)当取何值时,方程在上有解?
(本小题满分9分) 已知余弦函数是偶函数,且满足.若上的函数满足,则函数是偶函数吗?试证明你的结论.
(本小题满分8分)已知 (1)当时,求; (2) 若,求实数的取值范围.
(本小题10分)已知函数. (1)试讨论的单调性; (2)如果当时,,求实数的取值范围; (3)记函数,若在区间上不单调, 求实数的取值范围.
(本小题8分)自主招生是高校在高考前争抢优等生的一项重要举措,不少同学也把自主招生当作高考前的一次锻炼.据参加自主招生的某同学说,某高校2012自主招生选拔考试分为初试和面试两个阶段,参加面试的考生按照抽签方式决定出场顺序.通过初试,选拔出甲、乙等五名考生参加面试. (1)求面试中甲、乙两名考生恰好排在前两位的概率; (2)若面试中甲和乙之间间隔的考生数记为,求的分布列和数学期望.