小锋家有一块四边形形状的空地(如图,四边形ABCD),其中AD∥BC,BC=1.6m,AD=5.5m,CD=5.2m,∠C=90°,∠A=53°.小锋的爸爸想买一辆长4.9m,宽1.9m的汽车停放在这块空地上,让小锋算算是否可行.小锋设计了两种方案,如图1和图2所示.(1)请你通过计算说明小锋的两种设计方案是否合理;(2)请你利用图3再设计一种有别于小锋的可行性方案,并说明理由.(参考数据:sin53°=0.8,cos53°=0.6,tan53°=)
已知如图,在Rt△ABC中,△ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD,CB相交于点H,E,AH=2CH. (1)求sinB的值; (2)若,求BE的值.
已知三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,,根据题意画出示意图,并求tanD的值.
如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为. (1)求、的值; (2)将绕点顺时针旋转90°后,点A落到点C的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式; (3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒. (1)求线段CD的长; (2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得 S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由. (3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.
如图,是⊙的直径,点是⊙上一点,与过点的切线垂直,垂足为点,直线与的延长线相交于点,弦平分∠,交于点,连接. (1)求证:平分∠; (2)求证:PC=PF; (3)若,AB=14,求线段的长.