解方程:①;②;③;④.
如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,BC=3,CD=1. (1)求证tan∠AEC=; (2)请探究BM与DM的关系,并给出证明.
如图,正方形ABCD的边长为4,请你建立适当的平面直角坐标系,写出各个顶点的坐标.
设,其中可取、2,可取、、3.试求是正值的概率.
已知平面直角坐标系xOy,一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MO=MA.求点M的坐标.
如图,在△ABC中,∠ACB=90º,AC=3,BC=4.D是BC边上一点,直线DE⊥BC于D,交AB于E,CF//AB交直线DE于F.设CD=x. (1)当x取何值时,四边形EACF是菱形?请说明理由; (2)当x取何值时,四边形EACF的面积等于3?