(本小题满分12分)在如图所示的空间几何体中,平面平面,与是边长为的等边三角形,,和平面所成的角为,且点在平面上的射影落在的平分线上.(1)求证:平面;(2)求二面角的余弦值
已知为二次函数,不等式的解集为,且对任意,恒有. 数列满足,.(1) 求函数的解析式;(2) 设,求数列的通项公式;(3) 若(2)中数列的前项和为,求数列的前项和.
已知函数的图象过点,且它在处的切线方程为.(1) 求函数的解析式;(2) 若对任意,不等式恒成立,求实数的取值范围.
当为正整数时,区间,表示函数在上函数值取整数值的个数,当时,记.当,表示把“四舍五入”到个位的近似值,如当为正整数时,表示满足的正整数的个数.(1)判断在区间的单调性;(2)求;(3)当为正整数时,集合中所有元素之和为,记求证:
已知函数,(1)求;(2)令,求证:
已知,(1)若的取值范围;(2)若的图象与的图象恰有3个交点?若存在求出的取值范围;若不存在,试说明理由.