(本小题12分)某创业投资公司拟投资开发某种新能源产品,估计能获得x∈[10,1000]万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(Ⅰ)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(Ⅱ)现有两个奖励函数模型:(i) y=;(ii) y=4lgx-3.试分析这两个函数模型是否符合公司要求?
与双曲线=1有共同的渐近线,且过点(-3,2);求双曲线的标准方程.
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
已知椭圆=1(a>b>0)的离心率为,直线y=x+1与椭圆相交于A、B两点,点M在椭圆上,=+,求椭圆的方程.
已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数). (1)求椭圆的方程; (2)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的斜率.
如图所示,点P是椭圆=1上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.