(如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.
(本小题满分14分)在中,,. (1)求的值; (2)若,求的面积.
(本小题满分14分)已知函数,且对任意,都有. (1)求,的关系式; (2)若存在两个极值点,,且,求出的取值范围并证明; (3)在(2)的条件下,判断零点的个数,并说明理由.
(本小题满分14分)已知平面上的动点与点连线的斜率为,线段的中点与原点连线的斜率为,(),动点的轨迹为. (1)求曲线的方程; (2)恰好存在唯一一个同时满足以下条件的圆: ①以曲线的弦为直径; ②过点; ③直径.求的取值范围.
(本小题满分14分)已知数列的前项和为,且满足,(). (1)求,的值; (2)求数列的通项公式; (3)是否存在整数对,使得等式成立?若存在,请求出所有满足条件的;若不存在,请说明理由.
(本小题满分14分)如图,是边长为的等边三角形,是等腰直角三角形,,平面平面,且平面,. (1)证明:平面; (2)证明:.