(本题14分)一个圆锥的底面半径为,高为,其中有一个高为的内接圆柱:(1)求圆锥的侧面积;(2)当为何值时,圆柱侧面积最大?并求出最大值.
已知向量,.(I) 若,共线,求的值;(II)若,求的值;(III)当时,求与夹角的余弦值.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于,两点,求的取值范围.
已知数列{an}满足an+1= (Ⅰ)若方程f(x)=x的解称为函数y=f(x)的不动点,求an+1=f(an)的不动点的值; (Ⅱ)若a1=2,bn=,求证:数列{lnbn}是等比数列,并求数列{bn}的通项. (Ⅲ)当任意nÎN*时,求证:b1+b2+b3+…+bn<
设二次函数f(x)=mx2+nx+t的图像过原点,g(x)=ax3+bx−3(x>0),f(x), g(x)的导函数为,g¢(x),且="0," =−2,f(1)="g(1)," =g¢(1). (Ⅰ)求函数f(x),g(x)的解析式; (Ⅱ)求F(x)=f(x)−g(x)的极小值; (Ⅲ)是否存在实常数k和m,使得f(x)³kx+m和g(x)£kx+m成立?若存在,求出k和m的值;若不存在,说明理由.
如图,三棱柱中,侧面底面,,且,O为中点.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.