(本题14分)一个圆锥的底面半径为,高为,其中有一个高为的内接圆柱:(1)求圆锥的侧面积;(2)当为何值时,圆柱侧面积最大?并求出最大值.
已知椭圆的离心率,短轴长为.(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
(本小题满分12分)如图,四边形ABCD是边长为1的正方形, , ,且MD=NB=1,E为BC 的中点 (1)求异面直线NE与AM所成角的余弦值(2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;
(本小题满分12分)某批发市场对某商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(2)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.
(本小题满分12分)已知等差数列为递增数列,且是方程的两根,数列的前项和;(1)求数列和的通项公式;(2)若,为数列的前n项和,证明:
已知二次函数.(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;(2)若 对,方程有2个不等实根,;(3)在(1)的条件下,是否存在m∈R,使f(m)=-a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由.