(本小题满分14分)等差数列的前项和为,已知,为整数,且.(1)求的通项公式;(2)设,求数列的前项和.
已知是实数,函数满足函数在定义域上是偶函数,函数在区间上是减函数,且在区间(-2,0)上是增函数.(Ⅰ)求的值;(Ⅱ)如果在区间上存在函数满足,当x为何值时,得最小值.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(Ⅰ)试判断直线PB与平面EAC的关系;(Ⅱ)求证:AE⊥平面PCD;(Ⅲ)若AD=AB,试求二面角A-PC-D的正切值.
某家具城进行促销活动,促销方案是:顾客每消费1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金200元. 某顾客购买一张价格为3400元的餐桌,得到3张奖券.(Ⅰ)求家具城恰好返还该顾客现金200元的概率;(Ⅱ)设该顾客有ξ张奖券中奖,求ξ的分布列,并求ξ的数学期望E.
已知都是锐角,且.(Ⅰ)求证:;(Ⅱ)当取最大值时,求的值.
(本题14分)已知函数,实数a,b为常数),(1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围;(2)若a≥2,b=1,求方程在(0,1]上解的个数。