(本题14分)已知函数,实数a,b为常数),(1)若a=1,在(0,+∞)上是单调增函数,求b的取值范围;(2)若a≥2,b=1,求方程在(0,1]上解的个数。
已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.
已知a、b为实数,且b>a>e,其中e为自然对数的底, 求证: ab>ba.
设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间.
已知f(x)=x2+c,且f[f(x)]=f(x2+1) (1)设g(x)=f[f(x)],求g(x)的解析式; (2)设φ(x)=g(x)-λf(x),试问:是否存在实数λ,使φ(x)在(-∞,-1)内为减函数,且在(-1,0)内是增函数.
设关于x的方程2x2-ax-2=0的两根为α、β(α<β),函数f(x)=. (1)求f(α)·f(β)的值; (2)证明f(x)是[α,β]上的增函数; (3)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小?