(本题满分14分,第(1)小题5分,第(2)小题9分)已知圆,点,点在圆上运动,的垂直平分线交于点.(1)求动点的轨迹方程;(2)过点且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,请求出点的坐标;若不存在,请说明理由.
已知公差不为零的等差数列的前项和,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.
为了降低能损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能消耗费用为8万元.设f(x)为隔热层建造费用与20年的能消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点.(Ⅰ)求函数的解析式;(Ⅱ)在中,角的对边分别为,且,求的取值范围.
设和是函数的两个极值点,其中,.(1)求的取值范围;(2)若,求的最大值.注:e是自然对数的底.
如图,在梯形中,,,,平面平面,四边形是矩形,,点在线段EF上.(1)求异面直线与所成的角;(2)求二面角的余弦值.