(本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;,;,.(2)设函数的定义域为,值域为,函数的定义域为,值域为,那么“”是否为“是的一个等值域变换”的一个必要条件?请说明理由;(3)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.
(本小题12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数为6的概率。
已知集合.(Ⅰ)求;(Ⅱ)若,以为首项,为公比的等比数列前项和记为,对于任意的,均有,求的取值范围.
已知数列的前项和为,通项公式为,.(Ⅰ)计算的值;(Ⅱ)比较与1的大小,并用数学归纳法证明你的结论.
设曲线≥0)在点M(t, )处的切线与x轴y轴所围成的三角形面积为,求的解析式.
求函数()与函数的图像所围成的封闭区域的面积.