(本小题12分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数为6的概率。
为了对某课题进行研究,用分层抽样方法从三所高校 A , B , C 的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(I)求 x , y ; (II)若从高校 B , C 抽取的人中选2人作专题发言,求这二人都来自高校 C 的概率。
已知函数 f x = sin 2 x - 2 sin 2 x
(I)求函数 f x 的最小正周期。 (II) 求函数 f x 的最大值及 f x 取最大值时 x 的集合。
设函数 f ( x ) = 1 - e - x . (Ⅰ)证明:当 x > - 1 时, f ( x ) ≥ x x + 1 ; (Ⅱ)设当 x ≥ 0 时, f ( x ) ≤ x a x + 1 ,求 a 的取值范围.
己知斜率为1的直线 l 与双曲线 C : x2 a2 - y2 b2 =1 a > 0 , b > 0 相交于 B 、 D 两点,且 BD 的中点为 M 1 , 3 . (Ⅰ)求 C 的离心率; (Ⅱ)设 C 的右顶点为 A ,右焦点为 F , D F B F =17 ,证明:过 A,B,D 三点的圆与 x 轴相切.
如图,由 M 到 N 的电路中有4个元件,分别标为 T 1 , T 2 , T 3 , T 4 ,电流能通过 T 1 , T 2 , T 3 的概率都是 p ,电流能通过 T 4 的概率是0.9.电流能否通过各元件相互独立.已知 T 1 , T 2 , T 3 中至少有一个能通过电流的概率为0.999. (Ⅰ)求 p ; (Ⅱ)求电流能在 M 与 N 之间通过的概率; (Ⅲ) ξ 表示 T 1 , T 2 , T 3 , T 4 中能通过电流的元件个数,求 ξ 的期望.