化简:.
如图,小睿为测量公园的一凉亭 A B 的高度,他先在水平地面点 E 处用高 1 . 5 m 的测角仪DE测得 ∠ A D C = 31 ° ,然后沿 E B 方向向前走 3 m 到达点 G 处,在点 G 处用高 1 . 5 m 的测角仪 F G 测得 ∠ A F C = 42 ° .求凉亭 A B 的高度.( A , C , B 三点共线, A B ⊥ B E , A C ⊥ C D , C D = B E , B C = D E .结果精确到 0 . 1 m )
(参考数据: sin 31 ° ≈ 0 . 52 , cos 31 ° ≈ 0 . 86 , tan 31 ° ≈ 0 . 60 , sin 42 ° ≈ 0 . 67 , cos 42 ° ≈ 0 . 74 , tan 42 ° ≈ 0 . 90 )
如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示, A B = A E , A C = A D , ∠ B A D = ∠ E A C , ∠ C = 50 ° ,求 ∠ D 的大小.
如图,已知抛物线 y = a x 2 + b x + 3 ( a ≠ 0 ) 与 x 轴交于 A ( 1 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ,点 D 为抛物线的顶点.
(1)求抛物线的函数表达式及点 D 的坐标;
(2)若四边形 B C E F 为矩形, C E = 3 .点 M 以每秒 1 个单位的速度从点 C 沿 C E 向点 E 运动,同时点 N 以每秒 2 个单位的速度从点 E 沿 E F 向点 F 运动,一点到达终点,另一点随之停止.当以 M 、 E 、 N 为顶点的三角形与 △ B O C 相似时,求运动时间 t 的值;
(3)抛物线的对称轴与 x 轴交于点 P ,点 G 是点 P 关于点 D 的对称点,点 Q 是 x 轴下方抛物线上的动点.若过点 Q 的直线 l : y = kx + m ( | k | < 9 4 ) 与抛物线只有一个公共点,且分别与线段 G A 、 G B 相交于点 H 、 K ,求证: G H + G K 为定值.
如图,四边形 A B C D 内接于圆 O , A B 是直径,点 C 是 BD ̂ 的中点,延长 A D 交 B C 的延长线于点 E .
(1)求证: C E = C D ;
(2)若 A B = 3 , B C = 3 ,求 A D 的长.
阅读下列材料:
在 △ A B C 中, ∠ A 、 ∠ B 、 ∠ C 所对的边分别为 a 、 b 、 c ,求证: a sinA = b sinB .
证明:如图1,过点 C 作 C D ⊥ A B 于点 D ,则:
在 R t △ B C D 中, C D = a sin B
在 R t △ A C D 中, C D = b sin A
∴ a sin B = b sin A
∴ a sinA = b sinB
根据上面的材料解决下列问题:
(1)如图2,在 △ A B C 中, ∠ A 、 ∠ B 、 ∠ C 所对的边分别为 a 、 b 、 c ,求证: b sinB = c sinC ;
(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图3,规划中的一片三角形区域需美化,已知 ∠ A = 67 ° , ∠ B = 53 ° , A C = 80 米,求这片区域的面积.(结果保留根号.参考数据: sin 53 ° ≈ 0 . 8 , sin 67 ° ≈ 0 . 9 )