解不等式组并把它的解集在数轴上表示出来.
已知a:b:c=3:2:5, 求的值.
如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=cm,点 P 从点B出发沿BC方向以1cm/s的速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ,矩形PQRS与△ABC重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题: (1)AD= cm; (2)当点R在边AC上时,求t的值; (3)求S与t之间的函数关系式.
在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示. (1)试判断y与x之间的函数关系,并求出函数关系式. (2)若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式. (3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.
如图,所示,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B,C重合),过M做MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB,NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
如图,利用一面足够长的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),设矩形ABCD的宽AD为x米,矩形的长为AB(且AB>AD).(1)若所用铁栅栏的长为40米,用含x的代数式表示矩形的长AB;(2)在(1)的条件下,若使矩形场地面积为192平方米,则AD、AB的长应分别为多少米?