如图,在▱ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG与CH交于点N.(1)求证:四边形MFNH为平行四边形;(2)求证:△AMH≌△CNF.
图①、图②均为的正方形网格,点在格点上.在图中确定格点,画出以为顶点的四边形,使其为轴对称图形.(画两种)
先化简,再求值:2b2+(a+b)(a-b)-(a-b)2,其中a=-3,b=1.
化简:
计算:
我市某中学组织学生参加夏令营活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出1辆车,且空出30个座位没人座,已知45座客车每日每辆租金为450元,60座客车每日每辆租金为560元.试问:(1)此次参加夏令营的学生共有多少人?原计划租45座客车多少辆?(2)为了节约租金,并且保证每个学生都有座位,决定同时租用两种客车,这样租车的总数就比单独租用45座客车少一辆,问:45座客车和60座客车分别租多少辆才能使得租金最低?