(本小题满分12分)已知数列满足,且,(Ⅰ)求证:数列是等比数列;(Ⅱ)求数列的前n项和.
已知椭圆C的方程为 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) ,右焦点为 F ( 2 , 0 ) ,且离心率为 6 3 .
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线 MN 与曲线 x 2 + y 2 = b 2 ( x > 0 ) 相切.证明:M,N,F三点共线的充要条件是 | MN | = 3 .
在四棱锥中,底面 ABCD 是正方形,若 AD = 2 , QD = QA = 5 , QC = 3 .
(1)证明:平面 QAD ⊥ 平面 ABCD ;
(2)求二面角 B - QD - A 的平面角的余弦值.
在 △ ABC 中,角 A 、 B 、 C 所对的边长分别为 a 、 b 、 c , b = a + 1 , c = a + 2 ..
(1)若 2 sin C = 3 sin A ,求 △ ABC 的面积;
(2)是否存在正整数 a ,使得 △ ABC 为钝角三角形?若存在,求出 a 的值;若不存在,说明理由.
记 S n 是公差不为0的等差数列 a n 的前n项和,若 a 3 = S 5 , a 2 a 4 = S 4 .
(1)求数列 a n 的通项公式 a n ;
(2)求使 S n > a n 成立的n的最小值.
已知函数 f x = x 1 - ln x .
(1)讨论 f x 的单调性;
(2)设 a , b 为两个不相等的正数,且 b ln a - a ln b = a - b ,证明: 2 < 1 a + 1 b < e .