某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其它费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其它费用为每小时1250元.(1)请把全程运输成本(元)表示为速度(海里/小时)的函数,并指明定义域;(2)为使全程运输成本最小,轮船应以多大速度行驶?
正三棱柱ABC—A1B1C1的底面正△ABC的外接圆半径为,它的侧棱长为8,求正三棱柱的侧面积.
如图所示棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,且PD是四棱锥的高. (1)在这个四棱锥中放入一个球,求球的最大半径; (2)求四棱锥外接球的半径.
在球内有相距1 cm的两个平行截面,截面面积分别是5π cm2和8π cm2,球心不在截面之间,求球面的面积.
如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(π=3.14)
已知一个球内切于圆锥. 求证:它们的全面积之比等于它们的体积之比.