某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其它费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其它费用为每小时1250元.(1)请把全程运输成本(元)表示为速度(海里/小时)的函数,并指明定义域;(2)为使全程运输成本最小,轮船应以多大速度行驶?
(本题满分12分)已知A=,设,试比较与的大小.
(本题满分10分)已知是奇函数⑴、求的定义域;⑵、求的值;
(本小题满分15分)已知函数(1)若函数在上为增函数,求正实数的取值范围;(2)当时,求在上的最大值和最小值;(3)当时,求证:对大于1的任意正整数,都有
(本小题满分15分) 已知点P是上的任意一点,过P作PD垂直x轴于D,动点Q满足.(1)求动点Q的轨迹方程;(2)已知点E(1,1),在动点Q的轨迹上是否存在两个不重合的两点M、N,使 (O是坐标原点),若存在,求出直线MN的方程,若不存在,请说明理由。
(本小题满分14分) 在四棱锥P—ABCD中,底面ABCD是一直角梯形, ,与底面成30°角. (1)若为垂足,求证:; (2)求平面PAB与平面PCD所成的锐二面角的余弦值.