(本题14分)设各项均为正数的数列的前项和为,满足且构成等比数列.(1)证明:;(2)求数列的通项公式;(3)证明:对一切正整数,有;
已知函数,其中.(1)当a=3,b=-1时,求函数的最小值;(2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.
已知抛物线,准线与轴的交点为.(Ⅰ)求抛物线的方程;(Ⅱ)如图,,过点的直线与抛物线交于不同的两点,AQ与BQ分别与抛物线交于点C,D,设AB,DC的斜率分别为,的斜率分别为,问:是否存在常数,使得,若存在,求出的值,若不存在,说明理由.
【原创】设数列的前项和为,且满足.证明:数列是等差数列;若等差数列的公差,且成等比数列,求数列的前项和.
(本大题满分12分)某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
(1)求、、的值; (2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率
(本小题满分12分)如图,在直三棱柱中,,、分别是,的中点.(1)求证:∥平面;(2)求证:平面平面;(3)若,,求三棱锥的体积.