(本题14分)设各项均为正数的数列的前项和为,满足且构成等比数列.(1)证明:;(2)求数列的通项公式;(3)证明:对一切正整数,有;
已知直线:,,,(Ⅰ)求与交点的坐标;(Ⅱ)求过点,且与垂直的直线方程.
如图,一个几何体的三视图△是边长为的等边三角形, (Ⅰ)画出直观图;(Ⅱ)求这个几何体的体积
(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.(1)求证:数列{an}是等差数列;(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn;(3)若cn= f(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
(本小题满分13分)已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点.(1)求动点D的轨迹C的方程;(2)若过点(1,0)的直线l与曲线C交于不同两点P、Q,①当|PQ|=3时,求直线l的方程;②设点E(m,0)是x轴上一点,求当·恒为定值时E点的坐标及定值.
(本小题满分12分)已知是边长为1的正方体,求:⑴直线与平面所成角的正切值;⑵二面角的大小;⑶求点到平面的距离。