(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:
在会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?
已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为。求抛物线的方程.
将命题“正偶数不是质数”改写成“若则”的形式,并写出它的逆命题、否命题、逆否命题,并判断它们的真假。
(本小题满分13分)已知函数,,其中R.(Ⅰ)当a=1时判断的单调性;(Ⅱ)若在其定义域内为增函数,求正实数的取值范围;(Ⅲ)设函数,当时,若,,总有成立,求实数的取值范围。
(本小题满分13分)已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.(1)证明:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使·=0,若存在,求k的值;若不存在,说明理由.
(本小题满分13分)已知f(x)=mx(m为常数,m>0且m≠1).设f(a1),f(a2),…,f(an)…(n∈N)是首项为m2,公比为m的等比数列.(1)求证:数列{an}是等差数列;(2)若bn=an·f(an),且数列{bn}的前n项和为Sn,当m=2时,求Sn;(3)若cn=f(an)lgf(an),问是否存在m,使得数列{cn}中每一项恒小于它后面的项?若存在,求出m的范围;若不存在,请说明理由.