(本小题满分13分)已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M作x轴的垂线交C于点N.(1)证明:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使·=0,若存在,求k的值;若不存在,说明理由.
(本小题满分14分)已知函数f(x)=sin2x+sinxcosx-(x∈R). (1) 若x∈,求f(x)的最大值; (2) 在△ABC中,若A<B,f(A)=f(B)=,求的值.
已知椭圆:()的离心率,左、右焦点分别为、,点满足:在线段的中垂线上. (1)求椭圆的方程; (2)若斜率为()的直线与轴、椭圆顺次相交于点、、,且,求的取值范围.
已知函数. (1)若在上是增函数, 求实数a的取值范围. (2)若是的极大值点,求在上的最大值; (3)在(2)的条件下,是否存在实数b,使得函数的图像与函数的图像恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.
(本小题满分12分) 已知数列的前项和为,等差数列中,成等比数列。 (1)求数列、的通项公式;(2)求数列的前项和
(本小题满分12分) 在一次大型活动中,在安全保障方面,警方从武警训练基地挑选防暴警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选。假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为。这三项测试能否通过相互之间没有影响。 (1)求A能够入选的概率;试卷 (2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费不大于6000元的概率。