如图,平面直角坐标系中O为坐标原点,直线y=x+6与x轴、y轴分别交于A、B两点,C为OA中点;(1)求直线BC解析式;(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s),求y于t的函数关系式;(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.
小明、小敏两人一起做数学作业,小敏把题读到如图8(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说: “这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图8(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.要判断三角形全等,从这个问题中你得到了什么启发?
飞翔建筑公司在扩建二汽修建厂房时,在一空地上发现有一个较大的圆形土丘,经分析判断很可能是一座王储陵墓,由于条件限制,无法直接度量A、B两点间的距离,请你用学过的数学知识,按以下要求设计测量方案.画出测量方案;写出测量步骤(测量数据用字母表示);计算AB的距离(写出求解或推理过程,结果用字母表示).
如图,要测量河两岸相对的两点,的距离,可以在的垂线上取两点,使,再定出的垂线,使在一条直线上,这时测得的的长就是的长,为什么?
如图,给出五个等量关系:①、②、③、④、⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的命题(只需写出一种情况),并加以证明.
如图,相交于点,你能找出两对全等的三角形吗?你能说明其中的道理吗?