(本题10分)如图所示,在直三棱柱中,,,、分别为、的中点.(Ⅰ)求证:;(Ⅱ)求证:.
已知函数,钝角(角对边为)的角满足. (Ⅰ)求函数的单调递增区间; (Ⅱ)若,求.
已知数列的前项和为满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.
已知数列的前项和为满足. (Ⅰ)函数与函数互为反函数,令,求数列的前项和; (Ⅱ)已知数列满足,证明:对任意的整数,有.
在平面直角坐标系中,已知点和,圆是以为圆心,半径为的圆,点是圆上任意一点,线段的垂直平分线和半径所在的直线交于点. (Ⅰ)当点在圆上运动时,求点的轨迹方程; (Ⅱ)已知,是曲线上的两点,若曲线上存在点,满足(为坐标原点),求实数的取值范围.