已知椭圆 C : x 2 m 2 + y 2 = 1 (常数 m > 1 ),点 P 是 C 上的动点, M 是右顶点,定点 A 的坐标为 2 , 0 . ⑴若 M 与 A 重合,求 C 的焦点坐标; ⑵若 m = 3 ,求 P A 的最大值与最小值; ⑶若 P A 的最小值为 M A ,求 m 的取值范围。
已知实数a≠0,函数 (1)若,求,的值; (2)若,求的值.
已知函数. (Ⅰ)用定义证明是偶函数; (Ⅱ)用定义证明在上是减函数; (Ⅲ)作出函数的图像,并写出函数当时的最大值与最小值.
设是一次函数,且,求的解析式。
集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0}, C={x|x2+2x-8=0}. (Ⅰ)若A=,求a的值; (Ⅱ)若A∩B,A∩C=,求a的值.
已知集合,求 (1)当时,中至多只有一个元素,求的取值范围; (2)当时,中至少有一个元素,求的取值范围; (3)当、满足什么条件时,集合为非空集合。