已知:函数(是常数)是奇函数,且满足,(Ⅰ)求的值;(Ⅱ)试判断函数在区间上的单调性并说明理由;(Ⅲ)试求函数在区间上的最小值.
已知向量 a ⇀ = ( sin 2 x - 1 , cos x ) , b ⇀ = ( 1 , 2 cos x ) ,设函数 f ( x ) = a ⇀ · b ⇀ ,求函数 f ( x ) 的最小正周期及 x ∈ 0 , π 2 时的最大值.
某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少? (12分)
在中,内角对边的边长分别是,且,(1)求角 (2)若边且的面积等于,求的值.(12分)
解关于的不等式:. (12分)
(本题10分)甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间也没有影响.(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?