如图, △ B C D 与 △ M C D 都是边长为2的正三角形, 平面 M C D ⊥ 平面 B C D , A B ⊥ 平面 B C D , A B = 2 3 . (1)求点 A 到平面 M B C 的距离; (2)求平面 A C M 与平面 B C D 所成二面角的正弦值.
如图,直线与抛物线,交于A,B两点,线段AB的垂直平分线与直线y+5=0交于点Q(1)求点Q的坐标(2)当点P为抛物线上位于线段AB下方(含点A,B)的动点时,求△OPQ面积的最大值
设函数(Ⅰ)求的值域(Ⅱ)记△ABC的内角A,B,C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值
(1)已知直线经过点P(-2,1),且点A(-1,-2)到的距离为1,求直线的方程。(2)已知过点A(2,-1)的圆与直线x+y=1相切,且圆心在直线y=-2x上,求圆的方程。
若双曲线的右焦点恰好在抛物线的准线上,求P的值: