如图, △ B C D 与 △ M C D 都是边长为2的正三角形, 平面 M C D ⊥ 平面 B C D , A B ⊥ 平面 B C D , A B = 2 3 . (1)求点 A 到平面 M B C 的距离; (2)求平面 A C M 与平面 B C D 所成二面角的正弦值.
在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(Ⅰ)计算样本的平均成绩及方差;(Ⅱ)现从80分以上的样本中随机抽出2名学生,求抽出的2名学生的成绩分别在、上的概率.
已知函数,,其中且. (Ⅰ)当,求函数的单调递增区间;(Ⅱ)若时,函数有极值,求函数图象的对称中心坐标;(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
设平面向量,,已知函数在上的最大值为6.(Ⅰ)求实数的值;(Ⅱ)若,.求的值.
已知函数,其中,.(Ⅰ)若的最小值为,试判断函数的零点个数,并说明理由;(Ⅱ)若函数的极小值大于零,求的取值范围.
设等差数列的前n项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列前n项和为,且,令.求数列的前n项和.