某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令 ξ 表示走出迷宫所需的时间. (1)求 ξ 的分布列; (2)求 ξ 的数学期望.
已知函数。(1)求的最小正周期、的最大值及此时x的集合;(2) 证明:函数的图像关于直线对称。
如图,在四棱锥O—ABCD中,底面ABCD是菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:⑴平面BDO⊥平面ACO;⑵直线EF∥平面OCD.
已知抛物线y2=2px(p>0)的焦点为F,直线L:2px+3y=p2-。 ⑴当p为何值时,焦点F到直线L的距离最大; ⑵在第⑴题下,又若抛物线与直线L相交于A、B两点。求△ABF的面积。
已知命题:,使;命题:函数的定义域为R.(1)若命题为真,求实数的取值范围;(2)若命题为真,求实数的取值范围;(3)如果P且 Q为假,或P或 Q为真,求实数的取值范围.
已知椭圆中心在原点,长轴在坐标轴上,离心率为,短轴长为4,求椭圆标准方程