设函数 f ( x ) = ln x + ln ( 2 - x ) + a x , ( a > 0 ) . (1)当 a = 1 时,求 f ( x ) 的单调区间; (2)若 f ( x ) 在 ( 0 , 1 ] 上的最大值为 1 2 ,求 a 的值.
如图1,等腰梯形中,是的中点,如图2将沿折起,使面面连接是棱上的动点. (1)求证: (2)若当为何值时,二面角的大小为
已知数列是等差数列,是等比数列,其中且为、的等差中项,为、的等差中项. (1)求数列与的通项公式; (2)记,求数列的前项和.
在中,所对的边分别为函数在处取得最大值. (1)当时,求函数的值域; (2)若且,求的面积.
已知 当时,求函数的单调区间; 设,当时,若对任意,存在,使,求实数取值范围.
已知P是内一点,且满足条件,设Q为CP的延长线与AB的交点,令,用表示.