(本小题15分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为,某植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立.假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验, 设表示四次实验结束时实验成功的次数与失败的次数之差的绝对值.(1)求随机变量的分布列及的数学期望;(2)记“不等式的解集是实数集R”为事件A,求事件A发生的概率.
(本小题满分15分)已知数列满足,.令. (Ⅰ)求证:数列为等差数列; (Ⅱ)求证:.
(本小题满分15分)已知在中,,,分别是角,,的对边,且满足. (Ⅰ)求角的大小; (Ⅱ)若点为边的中点,求面积的最大值.
(本小题满分14分)已知为实数,对于实数和,定义运算“”: 设 (1)若在上为增函数,求实数的取值范围; (2)已知,且当时,恒成立,求的取值范围.
(本小题满分15分)如果数列同时满足以下两个条件:(1)各项均不为0;(2)存在常数, 对任意都成立,则称这样的数列为“类等比数列”. (Ⅰ)若数列满足证明数列为“类等比数列”,并求出相应的的值; (Ⅱ)若数列为“类等比数列”,且满足问是否存在常数,使得对 任意都成立?若存在,求出,若不存在,请举出反例.
(本小题满分15分) 如图,设椭圆的左、右焦点分别为,过 作直线交椭圆与两点,若圆过,且的周长为. (Ⅰ)求椭圆和圆的方程; (Ⅱ)若为圆上任意一点,设直线的方程为:求面积的最大值.