已知:如图,点A(3,4)在直线y=kx上,过A作AB⊥x轴于点B.(1)求k的值;(2)设点B关于直线y=kx的对称点为C点,求ΔABC外接圆的面积;(3)抛物线y=-1与x轴的交点为Q,试问在直线y=kx上是否存在点P,使得∠CPQ=∠OAB,如果存在,请求出P点的坐标;如果不存在,请说明理由.
已知数列,当时满足, (Ⅰ)求该数列的通项公式; (Ⅱ)令,求数列的前n项和.
已知函数的部分图象如图所示. (Ⅰ)求函数的解析式,并写出的单调减区间; (Ⅱ)已知的内角分别是A,B,C,角A为锐角,且的值.
设为实数,函数 (Ⅰ)当时,求在上的最大值; (Ⅱ)设函数,当有两个极值点时,总有,求实数的值。(为的导函数)
已知数列、满足:,,。 (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列{}的前n项和
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。 (Ⅰ)若G为FC的中点,证明:AF//平面BDG; (Ⅱ)求平面ABF与平面BCF夹角的余弦值。