已知曲线 C 1 : { x = - 4 + cos t y = 3 + sin t ( t 为参数), C 2 : { x = 8 cos θ y = 3 sin θ ( θ 为参数)。 (1)化 C 1 , C 2 的方程为普通方程,并说明它们分别表示什么曲线; (2)若 C 1 上的点 P 对应的参数为 t = π 2 , Q 为上的动点,求 P Q 中点 M 到直线 C 3 : { x = 3 + 2 t y = - 2 + t ( t 为参数)距离的最小值.
已知函数(Ⅰ)求的单调区间;(Ⅱ)求上的最值.
设曲线在点A(x,)处的切线斜率为k(x),且k (-1)=0.对一切实数x,不等式xk (x)恒成立(≠0).(1) 求(1)的值;(2) 求函数k(x)的表达式;(3) 求证:>
已知是函数的一个极值点。(1)求的值;(2)求函数的单调区间;(3)若直线与函数的图象有3个交点,求的取值范围。
现有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,将这五个球放入5个盒子内.(1)若只有一个盒子空着,共有多少种投放方法?(2)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)若每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?
已知满足:,(1)求;(2)猜想的表达式,并用数学归纳法证明你的结论