A. [选修4-1:几何证明选讲](本小题满分10分)如图,AB是⊙O的直径,C是⊙O外一点,且AC=AB,BC交⊙O于点D.已知BC=4,AD=6,AC交⊙O于点E,求四边形ABDE的周长.
已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间上的最大值.
已知函数f(x)=3x-.(1)若f(x)=2,求x的值;(2)判断x>0时,f(x)的单调性;(3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.
设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.
已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.