C. [选修4-4:坐标系与参数方程](本小题满分10分)已知直线的参数方程:(为参数)和圆C的极坐标方程:,判断直线和⊙C的位置关系.
已知函数,在点处的切线方程为. (I)求函数的解析式; (II)若对于区间上任意两个自变量的值,都有,求实数的最小值; (III)若过点,可作曲线的三条切线,求实数的取值范围.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且 (1)写出年利润(万元)关于年产品(千件)的函数解析式; (2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中及图中的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
已知数列的前n项和(其中c,k为常数),且2=4,6=83 (Ⅰ)求; (Ⅱ)求数列的前n项和Tn.
中,分别为角的对边,满足. (Ⅰ)求角的值; (Ⅱ)若,设角的大小为的周长为,求的最大值.