已知点A(-2,n)在抛物线上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数的最小值是-4,请画出点P(,)的纵坐标随横坐标变化的图象,并说明理由.
(本小题满分14分)已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的单调区间与极值.
(本小题满分14分)已知圆过点, 且在轴上截得的弦的长为.(1) 求圆的圆心的轨迹方程;(2) 若, 求圆的方程.
(本小题满分14分)设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.
(本小题满分13分)如图,正方形所在平面与三角形所在平面相交于,平面,且,(1)求证:平面;(2)求凸多面体的体积.
(本小题满分13分)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.