已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
已知函数.在△ABC中,角A,B,C所对的边是a,b,c,满足f(A)=1 (Ⅰ)求角A的值; (Ⅱ)若sinB=3sinC,△ABC面积为.求a边的长.
已知,解关于x的不等式.
设关于x的一元二次方程有两个实根. (1)求的值; (2)求证且; (3)如果,试求的取值范围.
如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)求二面角P—AC—E的余弦值; (3)求直线PA与平面EAC所成角的正弦值.
某建筑工地决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房材料费控制在32000元以内. (1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p; (2)简易房面积S的最大值是多少?并求当S最大时,前面墙的长度应设计为多少米?