若椭圆C1:+=1(0<b<2)的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上.(Ⅰ)求抛物线C2的方程;(Ⅱ)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
甲、乙两人各掷一次骰子(均匀的正方体,六个面上分别为1,2,3,4,5,6点),所得点数分别为x,y (1)求x<y的概率; (2)求5<x+y<10的概率。
已知函数, (l)求函数的最小正周期; (2)当时,求函数f(x)的单调区间。
已知函数 (1)若函数的图象切x轴于点(2,0),求a、b的值; (2)设函数的图象上任意一点的切线斜率为k,试求的充要条件; (3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.
给定椭圆.称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为. (1)求椭圆C的方程和其“准圆”方程; (2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.
已知函数, 数列满足. (1)求数列的通项公式; (2)令,若对一切成立,求最小正整数m.