.(本小题满分14分)在平面直角坐标系上,设不等式组()所表示的平面区域为,记内的整点(即横坐标和纵坐标均为整数的点)的个数为.(Ⅰ)求并猜想的表达式再用数学归纳法加以证明;(Ⅱ)设数列的前r项和为,数列的前r项和,是否存在自然数m?使得对一切,恒成立。若存在,求出m的值,若不存在,请说明理由。
(本小题满分12分)是单位圆上的点,点是单位圆与轴正半轴的交点,点在第二象限.记且. (1)求点坐标; (2)求的值.
(本小题满分12分)为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元. (1)若建筑第x层楼时,该楼房综合费用为y万元(综合费用是建筑费用与购地费用之和),写出y=f(x)的表达式; (2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?
(本小题满分12分)已知都是正数. (1)若,求的最大值; (2)若,求的最小值.
(本小题满分10分)解下列不等式 (Ⅰ) (Ⅱ)
已知是定义在上的函数,对任意的,都有,且 (1)求,的值; (2)证明:函数在上是奇函数.