(本小题满分14分) 设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(1)求圆心的轨迹E的方程;(2)过点(0,1),作轨迹的两条互相垂直的弦,设、的中点分别为、,试判断直线是否过定点?并说明理由.
.某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y245,z245,求初三年级中女生比男生多的概率.
已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0. (1)求直线l斜率的取值范围; (2)直线l能否将圆C分割成弧长的比值为的两段圆弧?为什么?
如图是某直三棱柱被削去上底后所得几何体的直观图、左视图、俯视图,在直观图中,M是BD的中点,左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。 (Ⅰ)求该几何体的体积; (Ⅱ)求证:EM∥平面ABC;
已知,设在R上单调递减,的值域为R,如果“或”为真命题,“或”也为真命题,求实数的取值范围。
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当时,求实数的取值范围.