(本小题满分13分)某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
(本小题满分13分)如图,四面体ABCD中,O是BD的中点, ABD和BCD均为等边三角形,AB=2,AC=。 (1)求证:AO⊥平面BCD;(2)求二面角A—BC—D的大小; (3)求O点到平面ACD的距离。
(本小题满分12分)设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.(1)若,求;(2)若,求数列的前2m项和公式;(3)是否存在p和q,使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.
(本小题满分12分)已知椭圆的中心在坐标原点,左顶点,离心率,为右焦点,过焦点的直线交椭圆于、两点(不同于点).(1)求椭圆的方程;(2)当时,求直线PQ的方程;(3)判断能否成为等边三角形,并说明理由.
(本小题满分13分)设函数.(1)求的最小正周期(2)若函数与的图像关于直线对称,求当时的最大值.