【2015高考四川,文20】如图,椭圆E:(a>b>0)的离心率是,点P(0,1)在短轴CD上,且=-1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.
如图,已知是以原点为圆心,半径为的圆与轴的交点,点在劣弧(包含端点)上运动,其中,,作于.若记,则的取值范围是
(本题共12分,第(Ⅰ)问4分, 第(Ⅱ)问8分)已知数列满足:. (Ⅰ)若,,,求的值; (Ⅱ)若,证明:且,.
(本题共12分,第(Ⅰ)问4分,第(Ⅱ)问8分)设为圆上的动点,过作轴的垂线,垂足为,点满足:. (Ⅰ)求点的轨迹的方程; (Ⅱ)过直线上的点作圆的两条切线,设切点分别为,若直线与点的轨迹交于两点,若,求实数的取值范围.
(本题共12分,第(Ⅰ)问6分,第(Ⅱ)问6分)如图所示,已知三棱柱,点在底面上的射影恰为的中点,. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
(本题共13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知函数. (Ⅰ)若函数在处取得极值,求曲线在点处的切线方程; (Ⅱ)当时,讨论的单调区间.