如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值; (2)连接AQ、CP,若AQ⊥CP,求t的值.
如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0). (1)b=,点B的横坐标为(上述结果均用含c的代数式表示); (2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S. ①求S的取值范围; ②若△PBC的面积S为整数,则这样的△PBC共有个.
如图,点A是x轴正半轴上的动点,点B的坐标为(0,4),将线段AB的中点绕点A按顺时针方向旋转90°得点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连接AC、BC、CD,设点A的横坐标为t. (Ⅰ)线段AB与AC的数量关系是,位置关系是. (Ⅱ)当t=2时,求CF的长; (Ⅲ)当t为何值时,点C落在线段BD上?求出此时点C的坐标; (Ⅳ)设△BCE的面积为S,求S与t之间的函数关系式.
如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G. (1)写出图中三对相似三角形,并证明其中的一对; (2)连结FG,如果α=45°,AB=,AF=3,求FC和FG的长.
高考英语听力测试期间,需要杜绝考点周围的噪音,如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点突发火灾,消防队必须立即赶往救火,已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
已知:关于x的一元二次方程 x2-(m2+2)x+m2+1=0(m≠0) (1)证明:方程有两个不相等的实数根 (2)设方程的两个实数根分别为x1,x2,(其中x1<x2).若y是关于m的函数,且y=x2-2x1-1,求这个函数关系式.