如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式; (2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由; (3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.
在一次投篮比赛中,甲、乙两人共进行五轮比赛,每轮各投10个球,他们每轮投中的球数如下表:
请你计算甲、乙两人投篮的平均数. 从统计学的角度考虑,通过计算,你认为在比赛中甲、乙两人谁的发挥更稳定些?
若,求的平方根.
(1)计算:÷(2) 解方程:
如图,在Rt△ABC中,∠C=90°,AC=BC,点P是斜边中点,将一个等腰直角三角板绕点P旋转,三角板的两条直角边与AC、BC交于点D、E,连结PC.(1)求证:PC平分∠ACB ;(2)图中有个等腰直角三角形,分别是;(3)求证:PD=PE.
如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点 ,旋转角度是 度;(2)若连结EF,则△AEF是 三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.