已知:如图,AB是⊙O的直径,BC是弦,OD⊥BC于点F,交⊙O于点D,连接AD、CD,∠E=∠ADC.(1)求证:BE是⊙O的切线;(2)若BC=6,tanA = ,求⊙O的半径.
已知,若函数是关于x的一次函数. (1)求的值,并写出解析式; (2)判断点(1,2)是否在此函数图像上,说明理由.
如图,在矩形ABCD中,AB=8cm,BC=20cm,E是AD的中点.动点P从A点出发,沿A-B-C路线以1cm/秒的速度运动,运动的时间为t秒.将APE以EP为折痕折叠,点A的对应点记为M. (1)如图(1),当点P在边AB上,且点M在边BC上时,求运动时间t; (2)如图(2),当点P在边BC上,且点M也在边BC上时,求运动时间t; (3)直接写出点P在运动过程中线段BM长的最小值.
小明在解决问题:已知a=,求的值. 他是这样分析与解的:∵a==, ∴a-2=,∴ ∴,∴=2(=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)化简 (2)若a=,①求的值; ②直接写出代数式的值= ;= .
(1)叙述三角形中位线定理,并运用平行四边形的知识证明; (2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC,E,F分别是AB,CD的中点,求证EF=.
如图,E、F分别是正方形ABCD中BC和CD边上的点,CE=BC,F为CD的中点,连接AF、AE、EF, (1)判定△AEF的形状,并说明理由; (2)设AE的中点为O,判定∠BOF和∠BAF的数量关系,并证明你的结论.