如图, 小明想测量某建筑物的高,站在点处,看建筑物的顶端,测得仰角为,再往建筑物方向前行米到达点处,看到其顶端,测得仰角为,求建筑物的长( 结果精确到,).
如图,△ABC是等边三角形,D是BC的中点.(1)作图:①过B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G.(2)在图中找出一对全等三角形,并证明你的结论.
解不等式组:
如图(1),在平面直角坐标系xOy中,抛物线与x轴交于,与y轴交于C(0,3),顶点为D(1,4),对称轴为DE. (1)抛物线的解析式是 ;(2)如图(2),点P是AD上的一个动点,是P关于DE的对称点,连结PE,过作F∥PE交x轴于F. 设,求y关于x的函数关系式,并求y的最大值;(3)在(1)中的抛物线上是否存在点Q,使△BCQ成为以BC为直角边的直角三角形?若存在,求出Q的坐标;若不存在,请说明理由.
⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图(2),CD与⊙O交于另一点E,BD:DE:EC=2;3:5求圆心O到直线CD的距离;(3)若图(2)中的点D是直线AB上的动点,点D在运动过程中,会出现在C,D,E三点中,其中一点是另两点连线的中点的情况,问这样的情况出现几次?
小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:
(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)画出(1)中两个函数的图象;(3)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.